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ABSTRACT 
h(iL1- 13 I30 

We introduce a model t o  descr ibe  the  i n t e r a c t i o n  of cosmic 
rays ( e i t h e r  of s o l a r  o r  of g a l a c t i c  o r i g i n )  wi th  t he  s o l a r  wind. 
The model cons i s t s  i n  replacing the magnetic i r r e g u l a r i t i e s  i n  
the wind by highly local ized s c a t t e r i n g  cen te r s .  The s ta t i s t ica l  
mechanical theory corresponding t o  t h i s  model is  t raced  i n  d e t a i l  
from L l o u v l l l e t s  theorem through a k l n e t l o  equation t o  the - 
conventional d i f f u s i o n  equation. The s t a t i s t i c a l  na tu re  of the  
f i e l d s  within the  magnetic i r r e g u l a r i t i e s  is described i n  terms 
of an appropr ia te  Fourier  analysis.  
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I. INTRODUCTION 

To study t h e  i n t e r a c t i o n  of cosmic rays ( s o l a r  and g a l a c t i c )  
w i th  t h e  s o l a r  wind, we assume t h a t  i t  i s  j u s t i f i e d  t o  replace 
the  e f f e c t  of t h e  magnetic f i e l d  i r r e g u l a r i t i e s  d i s t r i b u t e d  
throughout i n t e r s t e l l a r  space by f ixed s c a t t e r i n g  cen te r s .  
Furthermore, we assume t h a t  t h e  i n t e r a c t i o n  among the  cosmic 
rays  can be neglected.  We formulate, i n  d e t a i l ,  t h e  s t a t i s t i c a l  
mechanics t h a t  corresponds t o  t h i s  model i n  Sect ion 11. 

I n  Section I11 we address ourselves t o  t h e  quest ion of f ind ing  
i n  what sense and t o  what degree of approximation it  i s  possible  t o  
use a d i f fus ion  equation t o  represent  t h i s  system. By means of t h e  
mul t ip le  time sca le  technique ( R e f  1), we obta in  the k i n e t i c  
equation f o r  the d i s t r i b u t i o n  func t ion  of t h e  cosmic rays. We 
prove that the  lowest order  r e s u l t ,  i n  powers of t he  d i l u t i o n  of 
the  s c a t t e r i n g  centers ,  Is the k i n e t i c  equation previously 
employed f o r  studying t h i s  problem (Ref 2 ) .  The d i l u t i o n  parameter 
Is appropr ia te ly  small i n  t h e  s o l a r  environment, i . e . ,  t h e  product 
Of the  mean dens i ty  of magnetic kinks and t h e  kink volume i s  
approximately 1 . 3  x .loo2 . I n  Sect ion I V  we prove the  H-theorem 

I n  Sect ion V we obtain so lu t ions  of the 
k i n e t i c  equations t h a t  correspond, f o r  l a rge  times, t o  the  diffu-- 

, f o r  our k i n e t i c  equation. 

s i o n  equation (Ref 3 ) .  I n  these ca l cu la t ions ,  we make the  assump- 
t i o n  that  t he  gradient  of the d i s t r i b u t i o n  funct ion i s  small, and 
we do not  include ( a t  t h i s  po in t )  any l a rge  sca l e  magnetic f i e l d  
(Ref 5). The assumption about the smallness of the  grad ien t ,  
al though j u s t i f i e d  when p a r t i c l e s  have already diffused on an  
astronomical s c a l e  (say a f r a c t i o n  of 1 a.u. ), does not hold well 
f o r  shorter t-s. We will discuss  sepa ra t e ly  t h e  problem of l a r g e  
g r a d i e n t s  and the  de r iva t ion  of t he  dens i ty  dependence of the  
cosmic ray gas t r anspor t  p roper t ies  from our theory.  Th i s  problem 
has a t t r a c t e d  considerable a t t e n t i o n  r ecen t ly  (Ref 4) .  I n  Sect ion 
V I ,  by expanding t h e  s c a t t e r i n g  operator  with which we constructed 
the k i n e t i c  equation, we c a l c u l a t e  t h e  s c a t t e r i n g  c ros s  sec t ion  
of a cosmio ray by a magnekic kirk  OF aziall m i l e  defletticns, 

Ir 

~ 

. 
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The magnetic k ink  i s  described by a Fourier  s e r i e s  wi th  a narrow 
band concentrated a t  low frequencies.  Therefore, our formulation 
of t h e  problem is p a r t i c u l a r l y  wel l  su i t ed  f o r  c o r r e l a t i o n  of the  
magnetic f i e l d  data with the d i f f u s i o n  data. 

2 



TI&. FORMULATION OF THE PROBIXM d 

We consider 8 system of N-charged p a r t i c l e s  (cosmic rays) 
and an i r r e g u l a r  magnetic f i e l d  which is highly loca l ized  around 
M s t a t iona ry  poin ts  i n  space. We assume t h a t  t h e  i n t e r a c t i o n  of 
a p a r t i c l e  With the  local ized f i e l d  can be derived from a p o t e n t i a l  
funct ion 0 Furthermore, we neglect  the  i n t e r a c t i o n  among the 
charged p a r t i c l e s  themselves. Thus, the  Hamiltonian of t he  .system 
is 

r &  A 
where { xIJpi\ 
and 4TL) a r e  the coordina*tes of the  M loca l ized  f i e l d s  
(magnetic k inks) .  
t i a l  t h a t  confines specular ly  t h e  p a r t i c l e s  t o  a f ' i n i t e  volume V 
s ince  we shall  be concerned w i t h  the  l i m i t  of an i n f i n i t e  system 
and the  wall p o t e n t i a l  becomes inoperat ive i n  t h i s  l i m i t .  

a r e  t he  coordinates and momenta of the  N-particles,  

We have not included i n  Eq 2 . 1  the  wall  poten- 

Let us def ine  a J o i n t  d i s t r i b u t i o n  funct ion 

t h a t  g ives  the p robab i l i t y  densi ty  for t he  N 
t he  po in t s  {ziJsi) 
around the  poin ts  . The funct ion %M i s  normalized 
according t o  

p a r t i c l e s  t o  be a t  
i n  phase space mid t he  f i e l d s  t o  be loca l i ze6  

3 
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4 The system described satis. Zes well def ined Hamiltonian 
equations of motion. The joint distribution function DNM 
obeys, therefore, the Liouvllle equation 

(2 .3)  

where [DNM,H] is the Poisson bracket of the distribution func- 
tion with the Hamiltonian of Eq 2.1. We choose DNM to be 
symmetric under permutations of {xi,p& among themselves and . 

of the tXi] among themselves. f 

The reduced distribution functions are introduced 

The equation that fm obeys follows fron Eq 2.3 

where Xm and Lm are the operators 

4 



We'now take t he  l i m i t  of an i n f i n i t e  system by l e t t i n g  M -  00, 

V - C O  maintaining the  mean densi ty  of the  f i e l d  poin ts ,  
3 M/V , constant.  

nS 
The e x p l i c i t  equations f o r  the f irst  two d i s t r i b u t i o n  func- 

t i ons  become, then 

The func t ion  f l  descr ibes  the probabi l i ty  dens i ty  f o r  a s ing le  
cosmic ray while the  function f2 descr ibes  t h e  j o i n t  p robab i l i t y  
dens i ty  f o r  one cosmic ray and one s c a t t e r i n g  center .  

The f i e l d s  described by 0 are assumed t o  be so h i g h l y  
loca l i zed  that  we can ass ign  a radius  
f i e l d  inhomogeneities. The operator on the  r i g h t  hand side of 
Eq 2.5, and s imi l a r ly  i n  Eqs 2.8 and 2.9, i s  then of order  

compared t o  t h e  l e f t  hand s ide  of these equations.  
q u a n t i t y  nSrO 
an i r r e g u l a r i t y  t o  the mean dis tance between i r r e g u l a r i t i e s  . Tnis 
r a t i o  is q u i t e  small i n  the  s o l a r  c a v i t y  and thus 
de f ines  a convenient parameter of smallness B f o r  a power s e r i e s  
expansion. 

ro t o  t h e  "s ize"  of t he  

9 The 
3 "s 0 

i s  the cube of the r a t i o  of t he  average Size Of 

(- 1..3 x loo2) 

5 



111. MULTIPLZ TIivTE SCALE EXPANSION 

As was mentioned e a r l i e r ,  we r e s t r i c t  our a t t e n t i o n  t o  the  
d i s t r i b u t i o n  funct ion l a t e  i n  the k i n e t i c  s tage .  The term Vfl 
i n  Eq 2.8, therefore ,  i s  of order 
is 

where the mean f r e e  path A-i 

2 and (3 - aro Therefore, rob  - E which means then t h a t  Vfl 
i n  Eq 2.8 I s  of order E On the  o the r  hand, V f 2  i n  Eq 2.9 
should not  be considered of order E s ince  f 2  var i e s  sharply 
i n  t h e  region 

Ref 1, by 

- 1; - XI - ro; i . e .  , during a c o l l i s i o n .  
The var ious time sca les  a re  defined, following the  method of 

and the expansions of f l  and f 2  expanded i n  the powers of E 

a r e  given by 

The va r i ab le s  T~ a r e  t o  be t r ea t ed  as  independent va r i ab le s  
during the  ca l cu la t ion  and a r e  t o  be r e l a t e d  t o  t 
T* = c n t )  

( v i a  
a t  t he  end of the ca l cu la t ion .  

By equating powers of c i n  Eq 2.8, we r e a d i l y  obta in  

6 



and similar ly  from Eq 2.9 

(O) we have t h e  equation 3 For f 

Eq 3.1 shows that  fL (O) does not vary on the  f a s t  time sca l e .  To 
so lve  Eq 3.2 we need f2 (O) . This two-body func t ion  is obtained 
from Eq 3.4 

7 



where we have introduced the c o l l i s i o n  operator  

From Eq 2.6 t h e  operator  Hg i s  
\ 

c2 

We shal l  assume t h a t  as ~~4 00 the  c o l l i s i o n  operator  
C 2 ( ~ o )  reaches an asymptotic l i m i t  C, (OO)  , t h a t  is ,  we assume 
t h a t  bound s ta tes  do not  exist. I n  t h i s  l i m i t  we then have 

and therefore ,  from Eq 3.4 

We can therefore  conclude, using Eq 3.8, t h a t  

J - L  

Note t h a t  s ince  f2 (0) is a funct ion of x - x , 

Using t h i s  r e s u l t  i n  Eq 3.2,  we obta in  i n  the  asymptotic l i m i t  

. 

8 



By v i r tue  of Eq 3.1,  a l l  terms, but the  f i rs t ,  i n  Eq 3.10 a r e  
' independent of T~ . If we now demand t h a t  t he  expansion of fl 
In T~ be uniformly v a l i d ,  we must s e t  

Carrying out t h e  i n t e g r a l  on t'ne r i g h t  hand s ide  of Eq 3.10 
along the  d i r e c t i o n  of TT , we a r e  l e f t  with an  i n t e g r a l  over 
the  a rea  perpendicular t o  J , dsL J 

A -LA We now assume t h a t  t h e  funct ion f2 (x,v,X) becomes a product of 
f (?,.?) 
when t h e  d is tance  between the  cosmic ray and the  magnetic irregu- 
l a r l t y ,  
What appears then i n  Eq 3.12 i s  the  d i f f e rence  between the 
product d i s t r i b u t i o n s  evaluated before  and a f t e r  a "co1l:sion". 
A c o l l i s i o n  c lear ly  changes 'ii i n t o  (with = f o r  
e l a s t i c  c o l l i s i o n s ) .  Hence, 

and t h e  d i s t r i b u t i o n  of the i r r e g u l a r i t i e s  

1;; - XI , is very  large compared with the  kink s ize .  

F1 (?) 
A 

If we know t h e  kinematics of a c o l l i s i o n ,  we may transform the  
i n t e g r a l  over dSL into an i n t e g r a l  over the  element d e  of 
t h e  s c a t t e r i n g  angle.  ' 
a(0)  is given by 

The d i f f e r e n t i a l  m a t t e r i n g  c ros s  sec t ion ,  

9 



Assuming f o r  s impl i c i ty  t ha t  F, is constant  i n  space, Eq 3.13 
then becomes 

Thus, we have proven t h a t  Eq 3.14, which has been used previously 
to i n v e s t i g a t e  the d i f f u s i o n  problem (Ref 2 )  is t h e  lowest order  
term i n  t h e  k i n e t i c  equation derived using t h e  Hamiltonian given 
i n  Eq 2.1. 

The k i n e t i c  equation, co r rec t  t o  t h e  next order i n  E is 
obtained from Eq 3.3 .  
mined from Eq 3.5. After solving Eq 3.6 for f3 2(o) from Eq3.6 we 
f ind 

Equation 3 . 3  requi res  -? "(I) which i s  deter- 

where, with recorse  t o  Eq 2.6 

We assume t h a t  the operator  C (T ) =' exp 1-K T 1 has an 
asymptotic value c 3 ( m )  a namely 

3 0  3 0  

We then can write 

10 



1 

1 b and using Eq 3.16, we f ind  
i 

A J -\ 

d-V ('1 i s  a funct ion of x-X = 6 and x-X'= , 3 Since f 
i n  Eq 3.18 may be replaced by d e  (y + Y, ) 
s i d e  of Eq 3 . 5  thus becomes 

3 2  A 

The r i g h t  hand 4 

We note  the decomposition 

and t h e  comiiutatlon rule 

?he cont r ibu t ion  from the f i r s t  i n t e g r a l  on the  r i g h t  hand s i d e  
of Eq 3.19 vanishes s ince 

11 



and H2f2 (O) = 0 i n  t h e  asymptotic l i m i t .  The second i n t e g r a l  on 
the  r i g h t  hand s ide  of Eq 3.19 i n  a manner similar t o  tha t  used 
to obta in  Eq 3.14, becomes 

Eq 305J  With f3 (0) evaluated i n  the  asymptotic l i m i t  then becomes 

which has t h e  so lu t ion  ’ 

where we have made use of Eq 3.7. I n  t h e  asymptotic l i m i t  t h e  
integrand becomes independent of T; and t h e  i n t e g r a l  gives r i s e  
t o  a s e c u l a r  term. Therefore the  integrand must vanish and we 
have  

(3.22) 



and, 

(3.23) 
./ 4 2 w d  p) ( E )  s C 2 ( - p ( U )  I 

-900 
L o  

When we use t h i s  las t  result i n  Eq 3.3 and el iminate  the secu la r  
cont r ibu t ion  by means of the requirement that 

we obta in  

The term 'oflo)/a7, can be s e t  equal t o  zero since no secular-  
i t i e s  occur i n  Eq 3.25.. 
is not a necessary intermediate s t e p  i n  obtaining Eq 3.25. 

We note t h a t  t he  prec ise  form of Eq 3.2'3 



IV. TEE H-THEOmM 

We prove here the entropy pr inc ip le  (E-theorem) i n  the  form 
appropriate  t o  the  lowest order  k ine t i c  equation. 
averaging performed below i s  t a i lo red  f o r  t he  discussion of motion 
i n  the  presence of f ixed sca t t e r ing  cen te r s .  We can rewr i te  
Eqs 3.14 and 3.15 i n  the form 

The angular  

where 

and ?(j) is t he  angular  average defined by 

Let us  note  that  Eq 4.1 has an H-theorem. 
lowest order ,  H ( O )  is defined by 

The envropy func 

(4-3)  , 

14 



The, theorem states that 

P (0) . f o r  any distribution function 

Proof: We use the notation 

We then have 

Tne remainder of Eq 4.6 can be w r i t t e n  a8 

0 
fl Now we assume 

integration. Therefore, 
vanishes on the boundaries of t h e  volume of 

where we used the fact that  



and similsrly that  

Clearly,  from Eq 4.8, we note that  

. I l o  
Q.E.D. 
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i t  i s  known t h a t  t h e  k i n e t i c  equatlon, Eq 4.1, leads i n  t h e  
limit -cl >> V - l  We s h a l l  show here 
t h a t  f o r  s u f f i c i e n t l y  l a rge  times, t ne  "nomal"  so lu t ions  of the 
k i n e t i c  equation have d i f f u s i v e  behavior. 

, t o  a d i r fus ion  equation 

Le t  us  Fourier-Laplace transform Eq 4.1 us ing  t h e  no ta t ion  

We r e a d i l y  obta in  

A &  
Dividing Eq 5.3 by 
average by means of the  d e f i n i t i o n  Eq 4.4, we f ind  

p + i k - v  + v ana performir,g the  angular  



. The long-time behavior of the ve loc i ty  d i s t r i b u t i o n  i s  governed 
'by the  s o l a t i o n s  of D(z ,p )  = 0 where the funct ion D(Fjp)  i s  
given by 

We have, i n  fact 

where p3 (z) are  the solut ior is  of D(X,p) = 0 and R, (E) a r e  
A 

- 0 - -  
-L 

the r e s idues  of g ( k J v J p i ( E ) )  . We s h a l l  approximate the  solu- 
t i o n s  of D(k,p) = 0 by expanding i n  powem of E-v/V 

r, For most  ca ses  of symmetric cross s e c t i o n  k * v  = 0, so  t o  lowest 
order we keep only 

which defines the "average" ve loc i ty  u 2 . There a r e  t h r e e  
Solutions pi(k)  t o  Eq 5.7. The first two are  

18 



' . 3; 

I .  

I 
l 

and the  t h i r d  i s  

Tne f irst  two g ive  r ise t o  terms propor t iona l  t o  
~ ) ( E , ; , T ~ )  , which damp out rap id ly .  We concentrate  then on 

~ X P C - V T ~ I  in 

P+) and 

s p e c i a l i z i n g  to an i n i t i a l  condltion 

which, because of Eq 5.2 ,  corresponds t o  

- -  

We obtain,  from Eq 5.8, to lowest order i n  ku/V 



where 

an inverse Fourier  transform, Eq 5.11 
---- 

reduces t o  

we have introduced the diffuslon cozf 'f lclent D given by 

We, thus,  see that f o r  la rge  times oi3.r k i n e t i c  equaeion yields 
autozaticslly t h e  r e s u l t s  of the usud d i f fus ion  treatment of t h e  
problem (Ref 3 ) .  



! * ;  
1 .  ’ .  

VI. SCATTER13G C 3 0 S S  SECTION 

Up t o  t h i s  
s ca t t e r ing  of a 

point  we assum8 the  cros3 sec t ion  f o r  
p a r t i c l e  by a magfietic i m e g u l a r i t y  t o  

the  
be kno’ri’n. 

We want now t o  see how we can possibiy ca l cu la t e  sach a cross 
sec t ion .  

We have asstuned that  the f i e l d  cf a ?,ypfcal iryegularlty iP 
oon f incd  :o a ragLon i n  a ~ a o o ,  approximatad by a zphoro or radiua 
ro , and t h a t  nsr2 << 1 where ns i s  the  average d e n s i t y  
centee=.s of i r r e g u l a r i t i e s .  

of t h e  nagnet ic  irregularity i n  o r d e r  t o  c a l c u l z t e  t he  CTOSS 

sec t ion .  Obviously, we cannot make w i l d  gcesses  as  t o  the  
e x p l i c i t  form of the ragnet ic  f i e l d  of an i r r e g u l a r i t y  which I s  
hmown t o  be very conplex. i t  w i l l  be s u f f i c i e n t ,  howeveF, as we 
sha l l  see, t o  make two reasonable asaurnatlons about t h e  model of 
an i r r e g u l a r i t y .  

(IrTegularity) sphereJ  any coinponen’i; of the  magnetic f i e l d  

f l u c t u a t e s  very r ap id ly  along the  l i n e .  
cowonent  of the magnetic f i e l d  aloi?g t h i s  l i n e  p r a c t i c a l l y  
vanishes.  

FourLer s e r i e s  of l a r g e  wave numbers k 
Of r e l a t l v e l y  narrow band, i . e . ,  k/km << 1 , where k i s  Cne 
Width of the band and 

Eqs  3.7 and 3.8 t o  ca l cu la t e  the  c b n g e  i n  the ve loc i ty  of a 
p a r t i c l e  when i t  encounters an i r r e g u l a r i t y .  Let u s  r ewr i t e  

It i s  necessary t o  have further knowledge about the structure 

1. If we pick any s t r a i g h t  l i n e  c u t t i n g  through the  

The i n t e g r a l  of any 

2. Tie f l u c t u a t i n g  magnetic f i e l d  can be described by a 
(small wave length)  but  

km i s  t h e  mean value or“ t he  wave nmbcrs.  
We s h a l l  employ the  c o l l i s i o n  operator  C , ( t )  expressed i n  

the expression f o r  

D z  

C 2 ( t )  with V@ of Eq 3.8 

, 
I 

21 
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' . , .  
1. . ' * *  

- - - -  
where B i s  the  magnetic f i e l d  and i s  a func t ion  of E = x - X . 

~~ 

Any funct ion g ( v )  changes i n  time according t o  

The case t h a t  we a r e  in t e re s t ed  i n  here i s  g (V)  = V . Generally 
i t  i s  very d i f f i c u l t  t o  ca l cu la t e  
i n  p a r t i c u l a r  as i s  the  case here, when u ( t )  may have ap2recia.SI.e . 
gradier , ts .  
Of TJ x and r e t a i n  terms only up t o  second order .  The reason 
why t h i s  expansion gives  a reasonably good approximation i s  due 
t o  assumption (l), since,  as  we s h a l l  see,  only l i n e  i n t e g r a l s  of 
w appear i n  the expansion. We thus expand C g ( t )  as follows 

C,(t) - -  or i t s  asymptotic value, 

C g ( t )  i n  powers We s h a l l  be able, however, t o  expand 

- 

We can thus express v ( t )  by means of t he  expansion 

(6.4) 

- 
where v =y(O) . The f i r s t  order  ve loc i ty  change i s  given by 
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Similar ly ,  the  second o rde r  ve loc i ty  change i s  given by ' 

Let us 

L 

first 

J 
0 

J 
0 

ca lcu la t e  -0) Av remembering 

We f ind  

( 6 . 6 )  
t h a t  

J 
U 

The l a s t  i n t e g r a l ,  according t o  assumption (l), vanishes except 
f o r  a t  most a cont r ibu t ion  from one-half wave length of each of 
the Four i e r  components of w . B u t ,  s ince  t h i s  cont r ibu t ion  may 
be either positive or negative,  t h e  average 

- 

A 
The second order  term, . A v ( ~ !  may be wri ta ten i n  the  form 
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I 

Since i n t e g r a l s  1 ike those i n  vanish,  we should r e t a i n  i n  
Eq 6.8 only terms i n  which a given component of the vec tor  appears 
twice. We may then w r i t e  f o r  the ith component 

where i , j , k  is the  c y c l i c  order of' t he  cooTdinates. I f  we a r e  
now i n t e r e s t e d  i n  the  change i n  ve loc i ty  i n  t h e  d i r e c t i o n  perpen- 
d i c u l a r  t o  t h e  i n i t i a l  ve loc i ty ,  we may choose 
vk = v 

vi = 0 , vJ = 0 
and we f i n d  

The integral  over T I  

l eng th .  
cont r ibu tes  a t  most along one-half a wave 

Let the Fourier decomposition of uJ($) be 
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L e t  us assuie t h a t  
t h e  sphere lei  ro m d  h a s t h e  sane fora f o r  a11 coir;ponents 

w . ( e )  2 "  is a slowly varying func t ioa  wi th in  
A 3 

= o  
(6.14) 



. 
, 
1 

, 
I 

i '  so t h a t  Eq 6.13 reduces t o  

A similar expression i s  va l id  f o r  t he  o the r  
t o  the i n i t i a l  ve loc i ty ,  t h e  jt" component. 
b i s  defined by 

The 
th e 

' the  

perpendi 

(6.16) 

u l a r  d i r e c t i c n  
T'ne "impact parameter" 

(6.17) 

absolu te  value of the  change i n  ve loc i ty  perpendicular t o  
i n i t i a l  d i r e c t i o n  AvL y i e l d s  the  following expressior! f o r  
tangent of the s c a t t e r i n g  angle  8 

8 =  d \/LI 
v 

F i n a l l y ,  the  s c a t t e r i n g  c ross  s e c t i o n  is 

where o t herw i s e 

(6.18) 
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. 

The cross  sec t ion  of Eq 6.19 i s  l a rge  but i t  i s  confined to a 
narrow cone. We f ind ,  i n  f a c t ,  f o r  the total cross  sec t ion  the  
geometrical  value 

(6.21) 

. I n  
not  

The 

the  c o l l i s i o n  i n t e g r a l  of  Eq 4 .1  t;ke :'orward,scal;tering does 
con t r ibu te .  The pertltnent c ross  sec t ion  os i s  then 

corresponding t o t a l  c ross  sect ion-  i s  

(6.22) 

We thus see a depression of the geometric r e s u l t  by the  facto-;, 
(3/4Wm/W4 ' 



VII. CONCLUSIONS 

The i n t e r a c t i o n  of cosmic rays w i t h  t h e  magnetic kinks 
car r ied  by the  s o l a r  wind has been formulated using s t a t i s t i c a l  
mechanical methods. The major simplifying assumptions a r e :  
(1) i n f i n i t e l y  massive kinks and (2 )  vanishing average rnaE;netic 
f i e l d .  
f o r  t h i s  system and shown t h a t  I t s  normal s o l u t i o n s  have t h e  
des i red  d i f f u s i v e  behavior f o r  l a rge  times. 
on the  regime t h a t  corresponds t o  a d i l u t e  system of magnetic 
i r r e g u l a r i t i e s .  D r .  Boldt (Ref 5 )  has pointed out t h a t  s ince  ther?  
i s  r ecen t  evidence f o r  magnetic r i p p l e s  ( a system of dense, oveT- 
lapping, k inks )  on the magnetic s e c t o r  boundaries the  dense kink 
regime, L e e . ,  uniform turbulence,  is of considerable  i n t e r e s t .  

which the observat ional  information concerning magnetic f i e l d  

measurements can be incorporated i n  the  a n a l y s i s  of cosmic r ay  
d i f f u s i o n  i n  the  solar wind. 

We have derived r igorously the k i n e t i c  equation appropr ia tz  

Our theory focuses 

We be l ieve  tha t  a major meri t  of our theory i s  t h e  ease with 
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